If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9x2 + -3x + 25 = 0 Reorder the terms: 25 + -3x + 9x2 = 0 Solving 25 + -3x + 9x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 2.777777778 + -0.3333333333x + x2 = 0 Move the constant term to the right: Add '-2.777777778' to each side of the equation. 2.777777778 + -0.3333333333x + -2.777777778 + x2 = 0 + -2.777777778 Reorder the terms: 2.777777778 + -2.777777778 + -0.3333333333x + x2 = 0 + -2.777777778 Combine like terms: 2.777777778 + -2.777777778 = 0.000000000 0.000000000 + -0.3333333333x + x2 = 0 + -2.777777778 -0.3333333333x + x2 = 0 + -2.777777778 Combine like terms: 0 + -2.777777778 = -2.777777778 -0.3333333333x + x2 = -2.777777778 The x term is -0.3333333333x. Take half its coefficient (-0.1666666667). Square it (0.02777777779) and add it to both sides. Add '0.02777777779' to each side of the equation. -0.3333333333x + 0.02777777779 + x2 = -2.777777778 + 0.02777777779 Reorder the terms: 0.02777777779 + -0.3333333333x + x2 = -2.777777778 + 0.02777777779 Combine like terms: -2.777777778 + 0.02777777779 = -2.75000000021 0.02777777779 + -0.3333333333x + x2 = -2.75000000021 Factor a perfect square on the left side: (x + -0.1666666667)(x + -0.1666666667) = -2.75000000021 Can't calculate square root of the right side. The solution to this equation could not be determined.
| -69=3(x-6) | | -15m=-4m+5 | | .5=2x+-7 | | 5x-2x+8=x-2+10 | | -(2x-2)+4=4-(2x+1) | | 2x-8y+6-xy= | | 4-3x=21 | | 4b-3-6b-5= | | 18.7+z=40.3 | | 25b+11+6b^2=0 | | 4y=2(y+5)-2 | | 1-g+5+3(g-2)= | | 34=-6x+2(x-3) | | 4+(10x-2)=(x+9)4 | | -72=x-9x | | 4x-15+5x-6=15 | | 3.7m-6-3.7m-8= | | 12m+6m+18=0 | | 7(x+-6)=(x-7+x) | | 3(y-7)=24 | | 2x-5=5x+4 | | 16h^2-25+0=0 | | x+x+2=x+x+4+x+6 | | 8x+7=23x | | 5x-(3x-7)+2x+(2x-3)=14 | | 3x+49=x^2-14x-49 | | 2.5c+4x=83 | | -14+n+6=-5 | | -81h-64h+81h= | | 10y+8y=36 | | 5x^2+4x-10=0 | | 1-5+2+25-35+1= |